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The problem of turbulent free convection heat transfer from curved surfaces to non- 
Newtonian power-law fluids has been investigated using the Nakayama-Koyama solution 
methodology. The scheme is designed to deal with bodies of arbitrary geometric 
configurations and hence can be viewed as a generalized version of the Shenoy- Mashelkar 
approach for turbulent free convection heat transfer from a flat vertical plate to a power-law 
fluid. The surface wall temperature is allowed to vary in the streamwise direction in an 
arbitrary fashion, and calculations are carried out for the turbulent free convection about 
the horizontal circular cylinder and sphere for illustrative purposes. Available theoretical 
and experimental data have been compared with the predictions of the present analysis 
and the comparison of results has been found to be reasonably good. 
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I n t r o d u c t i o n  

For Newtonian fluids, turbulent free convection has been 
studied by a number of research workers, such as Colburn and 
Hougen, 1 Eckert and Jackson, 2 Bayley, 3 Fujii, '~ Kato et al., 5 
Cheesewright, 6 Kutateladze et al.,7 Mason and Seban, 8 Papailiou 
and Lykoudis, 9 Cebeci and Kahttab, ~° Noto and Matsumoto, 1 ~ 
Plumb and Kennedy, ~2 Lin and Churchill, ~3 George and 
Capp,~ '~ Thomas and Wood,l s Ruckenstein and Felske,16 Kawase 
and Ulbrecht,~ 7 and Nakayama and Koyama.~S However, such 
extensive efforts do not exist for non-Newtonian fluids in 
turbulent free convection as can be seen from the comprehensive 
review articles by Shenoy ~9"2° as well as Irvine and Karni. ~ 
The only existing analysis for power-law fluids are those of 
Shenoy and Mashelkar, 22 Ghosh et al., 23 and Kawase. ~4 All 
of them analyzed the turbulent natural convection heat transfer 
from a vertical plate under the assumption of high Prandtl 
numbers. Shenoy and Mashelkar ~ followed the integral ap- 
proach of Eckert and Jackson, 2 while Ghosh et al. 23 used the 
eddy diffusivity expression from the model based on Levich's 
three zone concept. Kawase, 2'~ on the other hand, used the 
unified energy dissipation concept originally proposed by 
Calderbank and Moo-Young 2s for Newtonian fluids and 
extended the ideas for non-Newtonian flow. 

The present paper extends the Shenoy-Mashelkar  approach 
for the flat vertical plate to bodies of arbitrary geometric 
configurations using the solution method of Nakayama and 
Koyama, ~ ~ who analyzed the turbulent free convection problem 
for Newtonian fluids. 

A n a l y s i s  

It is assumed that the geometric configuration has an arbitrary 
shape and the coordinate system is as shown in Figure 1. The 
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body may be planar or axisymmetric, and its wall geometry is 
defined by the function r (x). The wall surface is heated to Tw (x) 
above the ambient temperature Te, which is assumed to be 
constant (although the analysis can be easily extended to the 
variable Te case as done by Nakayama et al. 26 for laminar free 
and forced convection). The flow is induced against the 
gravitational force g under the influence of the buoyancy force 
component parallel to the wall surface. The appearance of 
turbulence in the flow begins at the top of the surface and 
gradually extends to cover more and more of the surface as the 
Grashof number increases. Turbulence occurs when the surface 
in question is big or the temperature difference is large. 

A usual control volume analysis within the boundary layer 
of thickness ~i leads to the following integral forms of the 
momentum and energy equations under the Boussinesq's 
approximation on the buoyancy force: 

d f]r*pu2dy r*pBogx f](T Te)dy-r*zw ( l a )  - -  ~ _ .  - -  

dx 
d 

[-°r*puCp(T T~)dy r*q~, ( lb )  _ _  - -  ~ 

dx 3o 
where 

f 1 : planar flow 
r* = ( l c )  

r(x) : axisymmetric flow 

and 

#~, = O cos t~ = y{1 (dr~2~ 1/2 - (ld) 
\dx /  ~ 

In the above equations z,~ and qw are the local wall shear and 
heat flux, while p, Cp, and flo are the density, specific heat, and 
thermal expansion coefficients, respectively. The tangential 
component of the acceleration due to gravity is indicated by 
Ox, which is related to the local surface orientation ~b through 
Equation ld. Moreover, the streamwise velocity and the local 
wall temperature are denoted by u and T with the subscripts 
e and w specifically pertaining to the boundary-layer edge and 
the wall surface, respectively. 
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Theoretical analysis of free convection is normally more 
difficult than forced convection due to the coupling of the 
momentum and energy equation in the former case. When 
dealing with non-Newtonian fluids this task becomes even more 
formidable. Hence, certain simplifications are sought in order 
to facilitate a solution without sacrificing much accuracy. 

The first step is to see how the equations would scale if the 
flow was purely forced convection. When dealing with turbulent 
non-Newtonian boundary-layer flow there is no denying that 
there exists a viscous sublayer that is very thin and close to 
the wall where the flow would be akin to a laminar forced 
convection flow. Also at the wall it is obvious that the local 
shear stress and the local heat flux assume their maximum 
value. Thus, an order of magnitude analysis of the kind used 
by Bejan 2~ for Newtonian fluids can be used for the present 
case. This would follow the lines of Acrivos et al. 2a for laminar 
boundary-layer flows of non-Newtonian fluids past external 
surfaces. Thus, 

~ ~ pu2~ (pu, l¢/l~y¢) - 1/2 (2a) 

q,~ k 
- Pr~/a(puJ~/12~::) ~/2 (Pr~ > 1 ) (2b) 

( T w - T ~ )  l¢ 

Heat transfer to power- law fluids: A. Nakayama and A. Shenoy 

where u~ is the characteristic velocity and Pr, is the characteristic 
Prandtl number for non-Newtonian fluids defined on the lines 
of Acrivos et al. 2s and based on a characteristic length l~ as 
given below : 

Pr~ = C p / ~ y / k  (2c) 

and/~e~.; is defined as follows: 

#eff = pu~l~/(pu2~ -"l~/K ) 2/(n + I} (2d) 

Combining Equations 2a and 2b gives the following: 

q'~ ~ r ~  Pr~-2/3 (Pro> 1) (3) 
pCp(T ,~-  T~)u~ pu~ 

It is now assumed that the above equation would hold even 
for the free convection flow if the characteristic velocity is 
related to the buoyancy rather than the free-stream velocity as 
in the forced convection case. 

The dimensionless functions F and 0 for the velocity and 
temperature profiles may be introduced as follows: 

FO1) = u/uc and O(~l) = ( T -  T~)/AT (4a,b) 

N o t a t i o n  

a Exponent of Grashof number in Equation 23 
a' Exponent of Grashof number in Equation 28a 
b Exponent of Prandtl number in Equation 23 
b' Exponent of Prandtl number in Equation 28a 
B Function of fl, n as defined by Equation 13a 
c' Exponent of function in Equation 28a 
C Coefficient in Equation 23 
Cp Specific heat per unit mass 
d Diameter of cylinder or sphere 
D Function of fl, n as defined by Equation 13b 
f Friction factor defined in Equation 6a 
F Function for velocity profile given by Equation 1 la 
g Acceleration due to gravity 
gx Tangential component of gravity defined by 

Equation ld 
Grx Generalized local Grashof number for power-law 

fluids based on g~ and x and defined in Equation 17a 
Gr~* Generalized local Grashof number for power-law 

fluids based on g~ and x and defined in Equation 29a 
Grd Generalized Grashof number for power-law fluids 

based on g and d and defined in Equation 27a 
h Local heat transfer coefficient in Equation 18 
hay Average heat transfer coefficient in Equation 26 
i Integer associated with the coordinate system in 

Equation 20a 
It Functions associated with deviation from unity and 

defined in Equations 17c and 21 
j Integer associated with the body shape given in 

Equation 20b 
k Thermal conductivity 
K Consistency index for a power-law fluid in Equation 

7c 
lc Characteristic length of scaling 
L Characteristic length of the geometric shape as 

used in Equation 24 
m t Exponent associated with the wall temperature 

distribution as given by Equation 22 
n Pseudoplasticity index for a power-law fluid 
Nux Local Nusselt number defined by Equation 18 

Nuaav 

Nu~av 

Prx 

Pr~* 

Prd 

q 
q,~ 
r* 

Rax 
Regen 
T 
AT 
Te 
Tw 
U 
ttc 
x, y 

Average Nusselt number based on diameter and 
defined by Equation 26 
Average Nusselt number based on characteristic 
length and defined by Equation 24 
Generalized local Prandtl number for power-law 
fluids based on gx and x and defined in Equation 17b 
Generalized local Prandtl number for power-law 
fluids based on #x and x and defined in Equation 29b 
Generalized Prandtl number for power-law fluids 
based on ~ and d and defined in Equation 27b 
Function of/8, n as defined by Equation 12 
Heat flux at the wall 
Function representing geometric configuration in 
Equation ld 
Rayleigh number defined as Grx Pr x 
Generalized Reynolds number in Equation 6a 
Temperature 
Temperature difference defined by Equation 4c 
Ambient temperature 
Temperature of the body surface 
Streamwise velocity component 
Characteristic velocity in Equation 4a 
Boundary-layer coordinates 

Greek symbols 
~t, fl Dimensionless functions of n appearing in Equation 

6a 
flo Expansion coefficient of the fluid 
Yl Coefficient defined by Equation 7c 
~ Boundary-layer thickness 
t/ Dimensionless variable defined by Equation 4d 
0 Dimensionless temperature profile defined by 

Equation 1 lb 
/~ Viscosity of a Newtonian fluid 
/~esy Effective viscosity defined in Equation 7a 
p Density of the fluid 
z,~ Local surface shear stress for power-law fluids 

defined in Equation 6b 
~b Local surface orientation in Equation ld 
Q Coefficient defined in Equation 7b 
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/ /  
r (x )  

Y 

Figure I Physical model and its coordinate system 

where 

AT = T,~ - T~ and r /=  y /6  (4c,d) 

The characteristic velocity u~ and the temperature difference 
AT are assumed to be functions of x. 

Equations la  and lb  can now be rewritten as follows: 

d r,pu2~ 6 + r*'c~ Br*po~flo AT6 (5a) ~ ~ 

A dx 

d 
O dx r*pu¢ AT6 = r*% ATPr~2/a/u~ (Sb) 

where 

A = F 2 dq, B = 0 dq, D = FO dq (5c,d,e) 
0 

Before solving the above equations, it is necessary to get 
expressions for ~ and ~ y  for the free convection turbulent 
flow under consideration. For  non-Ne~onian  ~wer- law fluids, 
Dodge and Meaner  29 have provided a Blasius type of approx- 
imate equation for the friction factor in terms of the generalized 
Reynolds n u m ~ r  as follows: 

f = ~ / R e ~ ,  for 5 x 1 0 3 ~ R % ~ . ~  10 ~ (6a) 

where ~ and ~ are functions of n for the case of power-law 
fluids, and an explicit equation in f for the local surface shear 
stress can ~ obtained as follows: 

~ /  pu~ = 0.02332 ( ~ H  / pu~6 ) ~/~ (6b) 

The effective viscosity, as in t rodu~d  by Skelland, 3° can be 
written as 

g~zy = ( ~ / 0 . 0 2 3 3 2 ) ~ p  ~ - ~ 6  ~ -¢o"u ~-~t2-")_~ (7a) 

where 

~ = g(0.817)2-ot2-.)/2a. + a (Tb) 

and 

~ = 8" -~g{ (3n  + 1)/4n}" (7c) 

Now an order of magnitude analysis of the Equations 5a and 
5b can be carried out assuming x to be of the order of Ic. 

Starting with the energy equation gives the following 

pucAT6 pu2c(l~eff/pu¢f)l/,, ATPr~Z/3/u ~ (8a) 
1~ 

Convection Conduction 

Solving the above yields 

u c ~ (lc/6)~(/~ey~./pl~)Pr~ s/3 (8b) 

Going to the momentum equation gives 

pu~ 
or pU2c (kteyf/pucc~) 1/'* ~ POx~o AT6 (8c) 

l~ 

Inertia Viscous Buoyancy 

In the interplay of the above three forces, the buoyancy force 
is certainly the most important in the present circumstances 
because without it there would be no flow. However, it is worth 
establishing whether the boundary layer is governed by the 
inertia-buoyancy balance or the viscous-buoyancy balance. For 
this purpose, each of the expressions given in Equation 8c are 
divided by buoyancy scale PO~flo AT6. Eliminating u~ using 
Equation 8b gives the following: 

1 , 

Gr~ Pr~ ~/~ Gr~ PL l~/a (8d) 

Inertia Viscous Buoyancy 

where 

G r  c - 

pZl3~ (gxfl o AT) (9a) 
2 

~ e f f  

and 

Prc = Cp#ey~-/k (9b) 

It is obvious from the above that the competition between 
inertia and viscous forces is essentially decided by the magnitude 
of the Prandtl number. From the definition of Pro, it is clear 
that for larger effective viscosities, as in the case of non- 
Newtonian fluids, the Prandtl number in turn would acquire 
values much greater than 1. Since the exponent of Prandtl 
number in the inertia scale is greater than that in the viscous 
scale, it would be quite proper to neglect the inertia term in 
comparison to the viscous term for the non-Newtonian fluids 
under consideration. This sort of scale holds for laminar as well 
as turbulent natural convection. Hence, it has been the com- 
monly followed practice to neglect inertia terms in the study 
of natural convection as can be seen from the review articles of 
Shenoy.19'20 Thus, under the high Prandtl number assumption, 
Equation 5a can be written as 

% = B p g ~  o AT6 (10) 

Equations 5b and 10 are the final simplified forms of the 
governing equations that are now to be solved. This requires 
expressions for the dimensionless velocity and temperature 
profiles. These are sought by following the arguments set forth 
by Eckert and Jackson. z They noted that in turbulent forced 
convection equations of the form F ( r / ) =  r/1/7 and 0 ( q ) =  
1 - r/1/7 hold rather well. For  turbulent free convection, they 
found that the experimental data could be fitted well with the 
same equation for temperature profile while the velocity profile 
needed to be modified to F(r/) = r/1/7 (1 - r/)'~. For  power-law 
fluids, the velocity profile for turbulent forced convection flow 
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can be taken as F 0 / ) =  r/~ where q = , 8 n / { 2 -  , 8 ( 2 -  n)} as 
given by Skelland. 3° In the present free convection case, the 
velocity and temperature profiles will be assumed by analogous 
arguments to those of Eckert and Jackson, 2 making use of the 
forced convection expression for powei'-law fluids as given by 
Skelland. 3° The dimensionless velocity and temperature profiles 
that are assumed to fit the turbulent free convection flow of 
power-law fluids are 

F(q) = r/+(1 - r/) + (lla) 

0(~)= 1 -r/'+ ( l ib )  

where 

q = ,8n/{2 - ,8(2 - n ) }  (12)  

Using Equations l la  and b, the expressions for B and D as 
defined in Equations 5d and e can be easily obtained as 

B = q/ (q  + 1) (13a) 

3 2 6 4 
D + 

q + l  q + 2  q + 3  q + 4  

1 1 6 1 
+ - -  - (13b) 

q + 5  2 q + l  2 q + 3  2 q + 5  

Note that for Newtonian fluids when q takes the value of 1/7, 
we have B = 1/8 and D = 0.0366, which are both identical to 
the values obtained by Nakayama and Koyama. ts On com- 
bining Equations 6b and 10, the following expression for uc is 
obtained : 

~ + ~ 
u~ = (Bgx~o AT/[-~) 2-+~(2 - " ) < ~ ( P / ? I  )2-+8(2-.) (14) 

This equation, along with Equation 7a, can now be substituted 
into Equation 5b to eliminate uc and z,~ and results in the 
following equation after mathematical rearrangement of the 
terms. 
d _216- B~'l 0 -  n)} 2 1 6 - B t l 0 - n ~ }  

_ _  (~ 3 { 2 - # ( 2 - n ) }  + ~ 3{2 - # ( 2  -n)} 

dx 

d In{r* ~ 216-BflO-.~I 
X ~ X  A T ( g x A T ) 2 - # ( 2 - n ) } 3 { 3 - 2 # ( 1 - n ) }  

2 - 5Bt2 - nl 
2{6_ ,8 ( lO_n)} f l ( f l ' ~312-# (2 - . , , (  f] "~-s/3 

= 3 { 5 =  2,8(1 n ) } ~ k ~ ]  k ~ ]  
$# 

+-++-+ 

x (~#o AT ) - ~z -#~ -.)r 

(~5) 

The solution to the above equation may readily be obtained as 

G r ~  - ~  -,~Pr~ ~ 

. 
= 

(16) 

where 

8# a,#(2+n) 4#(2 . )  Gr+ = (/9/71) X (g+,8oAT) - (17a) 

pCp 4# (3 4#(2+.))/2 Pr~ = T (?~/P) x - (g~,8o AT) t~ -4#(2-.)}/2 (17b) 
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and 
l r  = S~) { r*2{6-#llo-n)}gx3 + I0#{I-n) ATIS-2#(5 +4n)} I/3{3-2#(I-n)} dx 

x{r,216-#oo-.)}g~x+ to#o -s) AT~ ~-  ~#(~ +~ ) }  ~/~(3- ~#, -.)) 

(17c) 

The foregoing function I~ accounts for the total combined effects 
of arbitra~ geometries and wall tem~rature distributions, 
while Equations 17a and 17b define the local Grashof and 
Prandtl num~rs ,  res~ctively. 

The local Nusselt n u m ~ r  Nu~ is re la t~ to u~ and 6 as 

hx ( p C p u ~ x ~ (  z. ~(Cp#.::~ -~/~ 
Nux = ~ = ~ ) k ~ J ~ )  

= (oCp.:~.( ,, ~, 
k ~ Y kpu~-"~"] .IPC~(~4('1~4'~1-4,..1-,,,2-.,}-~/3 
( k ~0.02332: ~ p :  " 

(18) 
u¢ in the above equation may ~ eliminated in hvor  of ~, using 
Equation 14. Then, Equation 16 may ~ substituted into the 
equation. ARer considerable manipulations, one obtains the 
final Nu= expression as follows: 

4{~ - 20l  I - n;l - 9 3 + 10BI 1 - n} 
Nux = (0.02332) 6-#,o-~) f16-#,0-.)B2t6-#,o-.)~ 

~2{6 -- fl(lO -- n)} ~]-3+2n,7+2m 21-4,18+n) 

} 

• P r ~  (19) 

R e s u l t s  a n d  d i s c u s s i o n  

It is of great interest to investigate certain cases for which the 
function It remains constant. Any geometry near the stagnation 
point may be characterized by the following proportional 
relationship : 

r * o c x '  where i = { ~  I planebody (20a) 
axisymmetric body 

f~ i  pointed body (20b) 
gx ~c x ~ where j = blunt body 

For example, integers (i,j) should be set to (0,0) for a flat 
plate, (1, 0) for a vertical cone pointing downward, (0, 1 ) for 
the stagnation region on a horizontal circular cylinder, and 
(1, 1) for the stagnation region of a sphere. Equation 17c 
under the condition described by the foregoing proportional 
relationship yields 

2 { 6 - , 8 ( 1 0 -  n)}i  + {3 + 10,8(1 - n ) } j  -] 
+ {15- 2#(5 + 4n)}n~l-' 

1 .  J (21) 

where m, is associated with the wall temperature distribution 
around the stagnation point, which is assumed to follow 

AT oc x"' (22) 

The wall temperature distribution reflects on the function I~ in 
such a manner that I, diminishes as T,~ increases down- 
stream (i.e., m, > 0). Equation 21 for n = 1 and ,8 = 1/4 yields 
Nakayama and Koyama's expression for Newtonian fluids.1 a 
Moreover, I t = 1 for the case of an isothermal flat plate 
(i,j, nh) = (0, 0, 0). Thus, Equation 19 for Nux naturally reduces 
to the one derived by Sbenoy and Mashelkar 22 who tabulated 
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Table 1 Exponents a and b 

n c~ /:t a b 

1.0 0.0790 0.250 0.400 0.200 
0.9 0.0770 0.255 0.405 0.199 
0.8 0.0760 0.263 0.410 0,192 
0.7 0.0752 0.270 0.416 0.187 
0.6 0.0740 0.281 0.422 0.1 74 
0.5 0.0723 0.290 0.429 0.165 
0.4 0,0710 0.307 0.438 0.138 
0.3 0.0683 0.325 0.448 0.106 
0.2 0.0646 0.349 0.463 0.054 

Table 3 Coefficient for averaged Nusselt number Nu~,~/Gr~Pr~ 

n Isothermal cylinder Isothermal sphere 

1.0 0.0292 0.0316 
0.9 0.0304 0.0332 
0.8 0.0306 0.0337 
0.7 0.0302 0.0336 
0.6 0.0300 0.0337 
0.5 0.0298 0.0337 
0.4 0.0284 0.0325 
0.3 0.0273 0.0316 
0,2 0.0249 0.0292 

Table 2 Coefficient C for isothermal bodies 

Flat plate Cone Cylinder Sphere 
n (0,0)  (1,0)  (0,1)  (1,1)  

1.0 0.0402 0.0356 0.0380 0.0345 
0.9 0.0428 0.0379 0.0402 0.0365 
0.8 0.0443 0.0389 0.0412 0.0373 
0.7 0.0450 0.0394 0.0415 0.0376 
0.6 0.0464 0.0403 0.0422 0.0380 
0.5 0.0477 0.0411 0.0427 0.0384 
0.4 0.0483 0.0408 0.0420 0.0374 
0.3 0.0497 0.0411 0.0416 0.0367 
0.2 0.0501 0.0401 0.0392 0.0341 

around the periphery. The numerical integration results on a 
cylinder and a sphere are listed in Table 3 in terms of 

Nua~/G~ Pr~ (25) 

where 

Nua.~ = h~d/k (26) 

is the averaged Nusselt number based on the diameter d and 

Gra = (P/7~)8#d4~(2+n)(gflo AT) 4"~a(2 -") (27a) 

pCp 
pr a = ~ (?i/,o)4fld(3-4#(2+n)}/z(#flo AT)I~-4a(2-.)}/2 (27b) 

the values a, b, and C such that Nux can readily be evaluated 
from 

Nux = C Gr~, Pr~x (23) 

The values a, b, and C are furnished in Tables 1 and 2 for the 
isothermal fiat plate and cone as well as the stagnation regions 
of isothermal cylinder and sphere. 

The averaged Nusselt number, NuL, which is often more 
convenient to use for heat transfer estimation, can easily be 
derived by taking an integrated average over a length L. 

Lf~ (Nux/x)r* dx 
h.vL 

Nuca v -- _ 
k L * 

~o r dx 

1 + i  
r uxlx=L 

i 4 3{3 - 2/~(I - n)} + {3 + I0/~(I - n ) } ( j  + in,) 

2 { 6 - / 3 ( I 0 -  n)} 

(24) 
For illustrative purposes, numerical integrations have been 

carried out, using Equation 19 along with 17c to find the 
peripheral variation of local heat transfer coefficient h and its 
averaged value hay over an isothermal horizontal circular 
cylinder and sphere. The singularity at x = 0 can be removed 
by evaluating I~ according to Equation 21. The local heat 
transfer results obtained with n = 1, 0.5, and 0.3 are presented 
in Figures 2a and b for a cylinder and a sphere, respectively. 
The local heat transfer coefficient increases downstream, attains 
its maximum value at the upper half of the cylinder, and then 
decreases toward the rear stagnation point. A very similar heat 
transfer rate distribution prevails over the surface of the sphere. 
The location where the maximum heat transfer rate takes place, 
however, moves somewhat downstream for the case of the 
sphere. The peripheral distribution of heat transfer coefficient 
is rather sensitive to the power-law index n. An increase in n 
tends to smooth out the variation in the heat transfer coefficient 

v 

0,06 

0,05 

0.04 

0,03 

0,02 

0,01 

0.00 

a 

n = 1 .0  I so ther r~ l l  h o r t z 0 n t a [  

c i r c u l a r  c y H n d e r  
n = 0 , 5  

n = Q.3 

, , , , 
~12 zr 

2 X / d  

b 
0,06 m 

n = 1 .0  [ so the rme l  Sphere 

n = 0 , 5  0.05 D n =0,3 
s3~ 
~" 0.04 ~ ~  o~ 

~ o.03 
. ~  

0.02 

0.01 

0,00 / / "  I I I I I 1. 
7/ ' /2  77" 

2 x / d  

Figure 2 Local heat transfer results: (a) isothermal horizontal 
circular cylinder; (b) isothermal sphere 
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Comparison with existing theoretical analysis 
and experimental data 

In the case of an analysis of the kind done previously, there is 
often skepticism about its reliability and utility because of the 
use of the integral method when modern computers are 
available and because of the assumptions made in order to 
facilitate a solution. 

As regards the use of integral methods, there is often an 
impression that the method is insensitive to postulated tem- 
perature and velocity distributions and erroneous results are 
obtained. This impression is not truly correct. In fact, integral 
methods provide the easiest way of determining heat transfer 
coefficients with considerable accuracy as will be shown later 
when a comparison of results is made with the available 
numerical scheme. This is because the integral method, though 
rather insensitive to postulated temperature and velocity distri- 
butions, predicts the thermal boundary layer thickness and its 
dependence on the Grashof and Prandtl numbers very accurately 
and hence gives the right measures of the heat transfer coefficient. 
When dealing with non-Newtonian boundary-layer problems, 
in spite of the advent of powerful personal computers and 
efficient numerical algorithms, the integral method is still 
popular as has been shown by Nakayama z~ for the following 
reasons : 

( 1 ) integral formulation of governing equations is very simple 
and often analytical solutions become possible; 

(2) integral solutions are successful in providing critical 
parameters that are normally essential in engineering 
applications ; 

(3) effects of various parameters such as differences in rheo- 
logical behavior can be easily gotten from the integral 
solution for comparison without having to rerun the 
scheme as in numerical algorithms. 

Further, from a practical viewpoint, sophistications in an 
analysis would be justified only when such sophistications lead 
to a substantial improvement in its accuracy or applicability 
to other physical situations. With all the available sophisti- 
cation, no one has yet attempted to study the turbulent free 
convection problem from any arbitrary geometry other than 
the simplest vertical flat plate. Using the integral method, the 
present analysis could achieve a solution that, apart from being 
simple, is applicable to arbitrary shapes. 

Now in order to determine whether the assumptions made 
during the problem analysis are correct, a comparison between 
the obtained solutions and existing theoretical solutions and 
experimental data is done. 

Newtonian f luids 

Experimental data and numerical simulation results are available 
based on a turbulence model for turbulent free convection from 
a vertical flat plate to Newtonian fluids of moderately high 
Prandtl number. Fujii et al. 32 carried out experiments using 
water and spindle oil, and their results for moderately high 
Prandtl numbers are in reasonable agreement with the present 
analysis derived under the high Prandtl number approximation 
as shown in Figures 3a and b. It is worth noting that the present 
solution predicts a slight decrease in the Nusselt number for 
increasing Prandtl number at fixed values of Rayleigh number 
Rax = Grx Prx. Though this point has not been highlighted by 
previous workers, it can be seen that experimental data of Fujii 
et al., 32 in fact, show a possible decrease in the Nusselt number 
for increasing Prandtl number as can be seen by comparing 
the data shown in Figures 3a and b. The dependence of the 
Nusselt number on Prandtl number is not very strong, but it 
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is certainly consistent with the expressions proposed in the 
present analysis. 

In the same figures, the numerical simulation results obtained 
by Lin and Churchill 13 using the k-e model of Jones and 
Launder 3a are plotted. Whereas the present analysis slightly 
overpredicts the experimental data, the results of Lin and 
ChurchilP ~ slightly underpredict it, especially, in Figure 3b, 
which is for a moderately high Prandti number. Though the 
analysis of Lin and Churchill 1~ is based on a sophisticated full 
numerical simulation, it is not devoid of approximations and 
assumptions. In fact, they found that even an elaborate two- 
equation turbulence model like the k-e model was by no means 
readily applicable for the prediction of turbulent free convection. 
Since eddy diffusivities depend on both the momentum and 
energy equations, the existing models tuned for forced con- 
vection had to be modified to account for such dependency. 
Thus, Lin and ChurchilP a had to use empirical coefficients 
evaluated for forced convection and introduce an additional 
term for turbulent kinetic energy production due to buoyancy. 
This term was varied from 0 to 1 to match the experimental 
data in the range of 0.7 __< Pr _-< 58. 

The discussion in the previous paragraph reemphasizes the 
utility of the simple integral method for solving problems like 
the one under consideration. Despite the simplicity of the 
integral method, it can be seen that the accuracy is not truly 
sacrificed. 
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Figure 3(a) Comparison of the local Nusselt number from the 
present work for Pr x = 5.8 with experimental data of Fujii et al. = for 
water and the theoretical predictions of Lin and Churchill 1~ numerical 
solution for Newtonian fluids 
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Figure 3(b) Comparison of the local Nu~el t  number from the 
present work for Pr~ = 58 with experimental data of Fujii et al. = for 
spindle oil and the theoretical predictions of Lin and ChurchilP ~ 
numerical solution for Newtonian fluids 
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Figure 4 Comparison of the local Nusselt number from the present 
work with the theoretical predictions of Kawase ~ for non-Newtonian 
fluids at Pr~* = 1 O0 

N o n - N e w t o n i a n  f lu ids 

There are no experimental data on turbulent free convection 
heat transfer to power-law fluids yet. This is because experi- 
mentalists shied away from this area on the assumption that 
it is very difficult to set up turbulent convection in power-law 
fluids that are known to have high viscosities. Recently, 
Shenoy 34 has shown that under certain criteria it is possible 
to theoretically set up turbulent  free convection currents in 
commonly used viscous inelastic fluid systems. While such 
experimental evidence is awaited, the present analysis can only 
be compared with the available theoretical solution of Kawase. 24 
Figure 4 shows a comparison of Equation 23 and that of 
Kawase 2'~ as given below for the vertical flat plate. Equation 
23 is modified to a form congruent with the definitions used 
by Kawase z4 to give the following: 

Nux = C { 8"- ~ [ (3n + 1 )/4n ] "} c' Gr~.O, pro.b, (28a) 

where 

a ' = { 6 +  7 f l ( n - 1 ) } / 2 ( n +  l ) { 6 - / 3 ( l O - n ) }  (28b) 

b' = {3 - 7fl(8 + n)} /{6  - f l ( 1 0 -  n)} (28c) 

c' = - 9 f l / { 6 -  f l ( 1 0 -  n)} (28d) 

The equation proposed by Kawase 2'* is given as 

Nux = f ( n ) ( 1 / 2 ) ( 4  - n) /2(n  + 1 )Gr~ *(s"+ 7)/6(" + l)(n+2)Prx, l/3 

(28e) 

where 

Gr~* = (p/K)ZxZ+"(9,,~o AT)  x-" (29a) 

pCp K z/(.+~) (.-1)/2(.+ t)(gxfl 0 1)/2(n+ Pr=* = ~ -  ( / p )  x AT)3(.- u 

(29b) 

f ( n  ) = O.075nl/3 { exp(1.37n + 1.71)} ~')-"~/6"("+1) (29c) 

It can be seen from Figure 4 that the trends shown by 
Equations 28a and 28e are the same. The method of solution 
in the two eases is very different. Kawase z~ uses the energy 
dissipation concept and does not use any postulated temperature 
or velocity distributions in the theoretical analysis. The present 
integral method follows an entirely different line of argument 

to obtain the solution. Considering the diversity in the method 
of solutions, the agreement between the two is reasonable. 

C o n c l u s i o n s  

In the present effort, the Shenoy-Mashelkar  integral approach 
for a fiat plate has been successfully extended to the problem 
of turbulent free convection from curved surfaces to non-  
Newtonian power-law fluids. The surface wall temperature has 
been allowed to vary in the streamwise direction in an arbitrary 
fashion. 

Illustrative calculations have been carried out for a flat plate, 
a cone pointing downward,  a horizontal circular cylinder, and 
a sphere. Numerical values have been furnished for speedy 
estimation of local and average heat transfer rates. The numerical 
integration results on the isothermal circular cylinder and 
sphere reveal that an increase in the power-law index n results 
in the smoothing out of the peripheral distribution of local heat 
transfer coefficient. 

Comparison of the predictions of the present analysis with 
existing experimental data and theoretical numerical solution 
for Newtonian fluids shows reasonably good agreement despite 
the use of the high Prandtl  number  approximation. For  
non-Newtonian fluids, no experimental data exist and hence 
no comparison could be made. However, the theoretical predic- 
tions of the present work were compared with the available 
theoretical solution for the fiat plate and found to give 
consistent trends despite the diversity of the two methods. 
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